Lava field with snow

All Projects

The Department of Terrestrial Magnetism was founded in 1904 to map the geomagnetic field of the Earth. Over the years the research direction shifted, but the historic goal to understand the Earth and its place in the universe has remained the same. Today the department is home to an interdisciplinary team of astronomers and astrophysicists, geophysicists and geochemists, cosmochemists and planetary scientists.

These Carnegie researchers are discovering planets outside our solar system, determining the age and structure of the solar system, and studying the causes of earthquakes and volcanoes. With colleagues from the Geophysical Laboratory, these investigators are also helping to define the new and exciting field of astrobiology.

Carnegie Worlds Logo

Carnegie Worlds

The Carnegie Worlds Project combines astronomy, astrophysics, cosmo- and planetary chemistry, planetary physics and dynamics, experimental and theoretical petrology, and mineral physics to answer fundamental questions about the nature of exoplanetary solar systems and the characteristics that lead rocky planets to have clement surfaces suitable for the development of life. The final product of this project will be a new perspective on what kinds of planets in what stellar environments are most likely to develop habitable surfaces where life can thrive and then be remotely detected.

Visit Website
Chondritic meteorite

The Relationship Between Chondrite Matrices and Interplanetary Dust Particles

Primitive meteorites, chondrites are fragments of asteroids that have fallen to Earth. They preserve a record of the earliest stages of Solar System and planet formation. Chondrites are composed of two major components, chondrules and matrix. Chondrules formed as molten droplets in short-lived, high temperature events in the solar protoplanetary disk (nebula). If their abundance in chondrites is anything to go by, chondrules were produced by one of the more energetic processes operating in the early Solar System. What that process was still remains mysterious.

Learn More

Evolution of Hydrogen in the Inner Solar System

The goal of this project is to begin a detailed study of the hydrogen content and isotopic compositions of H and O in calcium-aluminum rich inclusions (CAIs) and chondrules from primitive chondritic meteorites. CAIs are the oldest objects in chondritic meteorites, containing 26Mg derived from the decay of 26Al (half-life of 717,000 years) in the first few million years of solar system history.

Learn More
DTM Diana Roman, quick deploy seismic station. Credit: Diana Roman.

The Carnegie Quick Deploy Box (QDB)

The Carnegie Quick Deploy Box (QDB) is a compact and cost-effective self-contained broadband seismic station, facilitating deployment during rapid response and large array situations. The QDB includes everything needed for an intermediate period station install (except battery and shovel) contained in a single box used for both shipment and field installation. The box is small enough (~13"x13"x21") and lightweight enough (< 35 lbs) to be checked as airline luggage. Traditional broadband field installations are typically time consuming and require bulky construction materials, limiting the number of stations that can be installed from a single vehicle without repeated trips to a storage facility. The sensor and the solar panels are connected to the recorder and battery inside the waterproof Pelican case via waterproof pre-installed bulkhead plug fittings. Everything fits in the box for shipping except the battery, and everything in the box stays in the field for easy demobilization at the end of the project.

Learn More
Kerry Key Alaska

Expedition to the Aleutian Islands: Geoscientists head to remote Alaska volcanoes

  • Diana Roman (Principal Investigator)
  • Erik Hauri (Principal Investigator)
  • Amanda Lough

Akutan and Adak. Gareloi and Little Sitkin. Kanaga, Segula and Buldir: Volcanoes on Alaska's remote Aleutian Island chain. Is all quiet on this western front? Scientists will soon find out.

Many of Alaska's more than 130 volcanoes are located along the 1,550-mile-long Aleutian Arc. It extends from the Alaska mainland west toward Kamchatka, Russia, and forms the northern part of the tectonically active "ring of fire" girding the Pacific Ocean basin.

Learn More
Diana Roman

BENTO

Forecasting volcanic activity requires continuous monitoring for signals of magmatic unrest in harsh, often remote environments. Furthermore, because volcanoes generally host abundant (non-volcanic) environmental noise, monitored signals must be confirmed on multiple instruments to avoid the possibility of false alarms due to a non-volcanic source of an apparent increase in a monitored signal. BENTO is a next-generation monitoring system that is highly portable, low-cost, rapidly deployable, and entirely autonomous. Such a system could be used to provide critical monitoring and data collection capabilities during rapid-onset eruptions, or to provide a crude baseline monitor at large numbers of remote volcanoes to 'flag' the onset of unrest so that costlier resources such as specialized instrumentation can be deployed in the appropriate place at the appropriate time. Ongoing field-testing and refinement of BENTO prototypes, and strategies for their deployment, in a wide range of volcanic environments, is helping to produce a reliable technology that can be incorporated into volcano monitoring activities worldwide.

Learn More
High Lave Planes of Eastern Oregon

High Lava Plains (HLP) of Eastern Oregon

Starting in 2005 and extending into 2010, the HLP project, funded by the Continental Dynamics Program of the National Science Foundation's Earth Sciences Division, seeks to establish a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region, chosen for study because of its high volcanic flux (this is the most volcanically active area of the continental United States), and its relatively young age, provides the team with an interesting and challenging problem. None of the accepted paradigms explain why the magmatic and tectonic activity extend so far east of the North American plate margin. By applying numerous techniques ranging from geochemistry and petrology to active and passive seismic imaging to geodynamic modeling, the researchers will examine an assemblage of new data that will provide key information about the roles of lithosphere structure, tectonics, flat-slab subduction, slab roll-back, and plumes as instigators of aerially extensive magmatism continuing from plate margins into the interior of the continent.

Learn More
Magma Ocean

NASA Astrobiology Institute (NAI)

The NASA Astrobiology Institute (NAI) Carnegie Team focuses on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, solar system formation, organic rich primitive planetary bodies, deep sequestration of CHON volatiles in terrestrial planets, prebiotic molecular synthesis through geocatalysis, and the connection between planetary evolution to the emergence, and sustenance of biology. This program attempts to integrate the sweeping narrative of life’s history through a combination of bottom-up and top-down studies. On the one hand, this team studies processes related to chemical and physical evolution in plausible prebiotic environments – circumstellar disks, extrasolar planetary systems and the primitive Earth. Complementary to these bottom-up investigations of life’s origin, they will continue this field and experimental top-down efforts to document the nature of microbial life at extreme conditions, as well as the characterization of organic matter in ancient fossils. Both types of efforts inform the development of biotechnological approaches to life detection on other worlds.

Learn More
Proxima b

The Earthbound Planet Search

Finding planets orbiting nearby stars has been a holy grail in astronomy for more than 400 years. We began working on this problem 30 years ago, at a time when there were no known extrasolar planets. In late 1995 we began routinely finding planets around the nearest stars. Since then we have found several hundred planets, including the first sub-saturn mass planet, the first neptune mass planet, the first terrestrial mass planet, the first multiple planet system, and the first transiting planet.

Visit Website
LBTI

Large Binocular Telescope Hunt for Observable Signatures of Terrestrial Planetary Systems (LBTI-HOSTS)

The purpose of this survey is to detect or limit warm dust in the habitable zones of nearby stars. About 20% of field stars have cold debris disks created by the collisions and evaporation of planetesimals. Much less is known about warm circumstellar dust, such as that found in the vicinity of the Earth in our own system. This dust is generated in asteroidal collisions and cometary breakups, and current detection limits are at best ~500 times our system's level, i.e. 500 zodi. LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3). Exozodi of this brightness would be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of habitable zone terrestrial planets. Detections of warm dust will also reveal new information about planetary system architectures and evolution.

Learn More
Superdeep diamonds

Superdeep Diamonds and Mantle Convection

Superdeep diamonds are derived from below the continental lithosphere and most likely from the transition zone (670km deep) or the top of the lower mantle. A full understanding of their origins and the compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

Learn More
Kepler NASA/Ames/JPL

Kepler: A Search for Habitable Planets

Alan P. Boss - Science Working Group Member

Kepler is NASA's first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (i.e., those one-half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

Learn More
Mongolia

Intracontinental Deformation And Surface Uplift In Mongolia

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. We are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. We are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry, biogeography, petrology, geochemistry, and seismology.

Learn More
Siberia Landscape

Siberian Traps and the End-Permian Extinction

About 252 million years ago, the largest mass extinction and the largest volcanic eruptions in Earth history occurred apparently synchronously:

  • Worldwide 90% of marine species and 70% of terrestrial species went extinct.
  • In Siberia 6,000,000 cubic kilometers of magma erupted, enough to cover the continental U.S. to almost a mile in depth.

Is it coincidence or causality? We have a hypothesis, and it ties closely with current climate changes.

Learn More
MESSENGER Mercury

MESSENGER Mission

The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission to orbit Mercury following three flybys of that planet is a scientific investigation of the planet Mercury. Understanding Mercury, and the forces that have shaped it is fundamental to understanding the terrestrial planets and their evolution. The orbital phase will use the flyby data as an initial guide to perform a focused scientific investigation of this enigmatic world.

Learn More
Exoplanet

Search for Exoplanets

DTM has undertaken a new search for Jupiter-like planets in orbit around nearby stars. Using the 2.5-m du Pont telescope located at Carnegie's Las Campanas Observatory in Chile, we are searching for gas giant planets similar to Jupiter by the astrometric method. In this method, the wobble of the host star's position on the sky as it orbits around the center of mass of the star-planet system is measured with high accuracy. Knowing the mass of the star then allows the true mass of the planet, as well as its orbital parameters (including the semi-major axis, eccentricity, and inclination), to be determined.

Learn More